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This paper presents experimental results on the nonlinear phase locking present in 
the resonant growth of unstable modes in the shear layer of an axisymmetric jet. The 
initial instability modes scale with the exiting shear layer and grow convectively 
with downstream distance. Because of the special condition at  the exit lip of the jet, 
the initial growth of modes is very sensitive to local unsteady pressure fields. A part 
of the unsteady field is stochastic in nature. To a larger extent, the pressure field at 
the lip of the jet contains the imprint of the downstream-developing instability 
modes, in particular the first unstable axisymmetric mode and its subharmonic. 
These are felt at the lip of the jet as a result of the energetic processes of the first 
vortex rollup and vortex pairing. As a result, a resonant feedback exists which under 
special conditions makes the initial region of this flow in some sense absolutely 
unstable. The features of this process are brought out by the normalized cross- 
bispectrum or cross-bicoherence between the instantaneous unsteady pressure a t  the 
lip of the jet and velocity time series measured at the same azimuthal position for 
different downstream locations. These give a measure of the nonlinear phase locking 
between the principle modes and their sum and difference modes. Analysis of these 
show a perfect nonlinear phase locking at  the fundamental axisymmetric and 
subharmonic frequencies between the pressure field at the lip and the velocity field 
at the downstream locations corresponding to the energy saturations of the 
fundamental and subharmonic modes. This resonance process can be suppressed or 
enhanced by low-amplitude axisymmetric mode forcing at  the natural preferred 
frequency of slightly detuned cases. Contrasted to this is the behaviour of the 
fundamental m = 1 helical mode. This mode was found to have the same spatial 
growth rate as the axisymmetric mode and a streamwise frequency approximately 
20 % higher, in agreement with theoretical predictions. However, short-time spectral 
estimates showed that these two fundamental modes do not exist at the same time 
or space. This suggests that each is a basin of attraction which suppresses the 
existence of the other. The apparent non-deterministic switching observed between 
these modes is probably the result of the response of the jet to stochastic input of 
axisymmetric or non-axisymmetric disturbances. This scenario may lead to a low- 
dimensional temporal model based on the interaction between these two modes 
which captures most of the early random nature seen in our experiments. 

1. Axisymmetric jet 
1.1 Introduction 

For many years investigations have been conducted to understand the flow processes 
that occur in jets. One practical purpose of these was to determine the relationship 
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between the observed characteristic velocity fluctuations in the jet and the 
generation of measured far-field acoustic disturbances associated with these flows. 
Previous investigations in naturally and artificially cxcited jets have determined the 
importance of two instability lengthscalcs : one associated with the initial shear-layer 
thickness a t  the exit of the nozzle, and the other associated with the jet diameter 
which governs the shape of the mean velocity profile at the end of the potential core. 
The instability modes in the first region develop through continuous and gradual 
frequency and phase adjustments to produce a smooth merging with the second 
region, This process makes this problem fundamentally interesting, and for that 
reason it has received a great deal of attention. An excellent review of free-shear flows 
of the type discussed here is given by Ho & Huerre (1984). As a result, only a short 
review of past related work is presented here in order to help to focus on the singular 
characteristic of resonant axisymmetric mode phase locking that can exist in these 
flows. 

1.2. Background 
The shear-layer development just past thc exit edge of a jet is initially dominated by 
a linear instability mechanism. The vorticity distribution is inviscidly unstable to 
small perturbations through a Kelvin-Helmholtz instability mechanism. These 
instability waves grow exponentially with streamwisc distance, and when finite 
amplitudes are reached, roll up into discreet vortices. 

In  experiments in low-disturbance axisymmetric jet flows, most emphasis has been 
placed on the growth of axisymmetric disturbances close to the nozzle exit. The 
analysis of Michalke (1971), however, pointed out that the first helical mode has 
amplification characteristics in this region which are nearly identical to those of the 
fundamental axisymmetric mode. His analysis further suggests that as the shear 
layer thickens or grows, the amplification of the helical mode becomes more 
dominant over the axisymmetric mode. Mattingly & Chang (1974) performed a 
similar analysis with a different prescribed mean velocity distribution that showed 
that the amplification of the axisymmetric mode was only approximately 12 % larger 
than that for the helical mode, and that the streamwise frequency of the most 
amplified helical disturbance in that case was approximately 20 % higher than that 
of the most amplified axisymmetric mode. Drubka (1981) experimentally verified 
these results from cross-spectral and azimuthal phase measurements between 
velocity fluctuations in the shear layer and pressure fluctuations a t  the lip of a very 
low-disturbance axisymmetric jet flow. 

The fact that the growth of the subharmonic of the initial axisymmetric mode 
leads to  the downstream pairing of neighbouring vortices is now well established. In  
a two-dimensional mixing layer, Winant & Browand (1974) concluded that the 
successive pairing of neighbouring vortices was a primary mechanism for the 
streamwise growth of the shear layer. I n  a more recent experiment, Ho & Huang 
(1982) documented, for a harmonically forced mixing layer, that the first few pairings 
were accompanied by an approximate doubling of the shear-layer momentum 
thickness. This observation points to the potential importance of this fundamental 
process in jet mixing and spreading. 

Focusing on the growth of subharmonic disturbances, Kelly (1967), in a linear 
temporal formulation, determined that when the amplitude of a fundamental 
instability wave reaches a finite value in the presence of a subharmonic wave, 
another instability mechanism based on a subharmonic resonance can arise. This 
mechanism requires that both waves have the same phase speed. This subharmonic 
resonance is weakly nonlinear and described by the Mathieu equation. 
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As the initially linear instability grows in amplitude toward a finite value, the 
shear layer begins to  roll up to form discrete vortices. At this point the problem is 
fully nonlinear and is therefore past the range of validity of the linear model, such 
as for Kelly (1967). Pierrhumbert (1980) examined the effect of this nonlinearity on 
the subharmonic resonance. His results predicted that the nonlinearity associated 
with the rolled-up vortices enhances the growth of the subharmonic instability. The 
growth of the subharmonic mode is important in the sense of describing the 
mechanism for the pairing of ring vortices observed in an early experiment by Wille 
(1963). 

Browand & Laufer (1975), Bruun (1977), Peterson (1978), Hussain & Clark (1981) 
and Laufer & Zhang (1983), among others, documented the effect of pairing on the 
growth of axisymmetric jets. Acton (1980) modelled discrete vortex ring elements 
and computationally followed the development of the instability wave into eddies, 
with and without forcing. Reasonable agreement was observed between this 
axisymmetric model and the experiments, thereby drawing the speculation that the 
large-scale structures in the jet are essentially axisymmetric. Ho (1981) based his 
subharmonic evolution model on this assumption. 

External harmonic forcing of the jet has been used by many investigators to 
organize the streamwise location where the shear layer first rolls up as well as the 
pairing location. This forcing has invariably been large amplitude and axisymmetric. 
Kibens (1979) showed that when the initial instability frequency is related to  the 
final ‘preferred’ jet instability frequency by an integer power of two, the jet becomes 
organized, vortex pairings are localized and the development of the initial shear- 
layer frequency towards the final preferred jet frequency occurs through an  integer 
number of pairings. Although this was first observed in an externally excited jet, 
Drubka (1981) documented the same phenomenon for his ‘low ’-disturbance 
unexcited condition at a Reynolds number of 42000. At this condition, Drubka 
(1981) also noted the largest pressure fluctuations a t  the lip a t  a frequency 
corresponding to  the subharmonic of the axisymmetric mode. From these results, he 
suggested a natural self-excitation for this organized pairing state. 

Although the exact mechanism of pairing is not completely understood, a number 
of physical observations associated with this process have been made. When the 
initial axisymmetric subharmonic mode grows to a certain high amplitude, a 
secondary instability, the subharmonic resonance, develops. Petersen (1978) and 
Drubka (1981) reported that during resonance the subharmonic wave attains the 
same phase speed as the fundamental wave. This occurs after approximately two 
fundamental wavelengths. Beyond this point, the amplitude of the subharmonic 
mode increases to grow beyond that of the fundamental and vortex pairing is 
observed to occur. This point of pairing closely corresponds to  the amplitude 
maximum of the subharmonic mode as shown by Ho & Huang (1982). 

The vortex rollup and pairing are not generally expected to  occur at a fixed 
streamwise location. Owing to the doubling in momentum thickness measured by Ho 
& Huang (1982) at pairing, such behaviour would result in a stepwise growth of the 
shear layer. However, Laufer & Zhang (1983) explained that in general the location 
of the pairing moves randomly in time and space, which results on the average in a 
smooth spreading rate. 

Sarohia & Massier (1978) showed that a significant part of the pressure signal in 
the near field of a jet was generated by the pairing interaction and merging process. 
Laufer & Zhang (1983) suggest that  the induced perturbations a t  the nozzle exit are 
the volume integral effect of all the fluctuations existing in the flow, with the largest 
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contribution coming from the subharmonic fluctuation a t  the pairing location. These 
pressure fluctuations induced by the unsteady flow downstream can set up an 
unsteady Kutta condition at the sharp trailing lip of the jet. This phenomenon and 
the fact that acoustic forcing further organizes the jet suggest that the fluctuations 
caused by the merging vortices propagate upstream and create a strong feedback- 
loop mechanism in the jet. Ho & Huang (1982) state that the location of the vortex 
merging can be predicted from the feedback loop evolution. This prediction is made 
by requiring the number of waves in the feedback loop to be an exact integer. 

The organization of the jet flow and feedback accompanying pairing makes it a 
likely mechanism for acoustic wave generation. Ffowcs Williams & Kempton (1978) 
from their numerical calculations suggested that the pairing of eddies is the primary 
mechanism for the production of noise. Since the location of pairing can vary over 
a distance comparable with one eddy separation distance, the radiated sound is 
broadband. Sarohia & Massier (1978) add that the merging process has a statistical 
distribution of length and life span, so that i t  is quite probable that the emitted jet 
noise can appear to be broadband. Kibens (1979) observed, however, that in a forced 
jet, the resulting increase in noise consisted of tones a t  the subharmonics of the 
excitation frequency, which was accompanied by a reduction of the broadband noise. 

1.3. Objectives 

The object of this study was to further document the relation between the 
axisymmetric fundamental and subharmonic modes by following their development 
and interaction in the velocity field from the lip of the jet to beyond the point of 
vortex pairing. We hoped to identify the role of the feedback in this process and to 
locate the region of the maximum shear-layer influence. Furthermore, we intended 
to document the interactions between these and other instability modes, including 
non-axisymmetric (helical) modes leading to  the appearance of other multiple- 
interaction modes. Such information, we felt, would be necessary to point to efficient 
and predictable means of controlling these jet flows. 

Two Reynolds numbers were examined, one being Drubka’s Re = 42000 case at 
which a natural coupling existed between the initial and final jet instability 
frequencies and, as a contrast, one a t  which no special coupling existed. The effect 
of initial conditions on these jets was examined by increasing the broad-spectrum 
turbulence intensity within the jet core and by very low-amplitude narrowband 
external acoustic forcing. The forcing was intended to favour axisymmetric modes. 
A level of the forcing was chosen to be comparable with the levels in the natural 
feedback so as to mutually enhance or compete with that mechanism. 

2. Experimental set-up 
As in the case of Drubka (1981), this study was conducted in the IIT Je t  Facility. 

A detailed description of that facility and the characteristics of the jet flow are 
contained in that reference and will not be presented here. Benchmarking 
measurements, documented in the thesis by Shakib (1984), were taken to  confirm 
that the flow conditions were the same as for that previous work. 

Two of Drubka’s flow cases were used in this study. The first was his lowest initial 
disturbance condition (u’/Uj = 0.05%) designated lL, and the other his highest 
initial disturbance jet condition (u’/Uj = 0.16%) designated 3L. A scale drawing of 
the exit face of the nozzel is shown a t  the top of figure 1.  The exit diameter of the 
jet in this figure is 5.14 cm. As shown in this drawing, eight azimuthal pressure taps 



Mode selection and resonant phase locking in axisymmetric jets 

1.9 crn 

257 

FIGURE 1. Schematic of nozzle face showing azimuthal pressure taps and laboratory coordinate 
system for measurements. 

provide sites for measuring the unsteady pressure field near the separation point a t  
the jet lip. 

The data consisted of simultaneously acquired time series of the unsteady 
pressures a t  the lip of the jet, and the streamwise velocity fluctuations measured at  
different spatial locations in the shear layer, up to approximately one diameter down- 
stream. The velocity samples were always taken at  the same azimuthal position as 
the sampled pressure port. This arrangement is sketched a t  the bottom of figure 1. 
A voltage proportional to pressure was obtained from a B&K Type 2209 precision 
sound level meter which provided a flat amplitude response up to approximately 
4000 Hz. A hot wire powered by a DISA 55D01 constant-temperature anemometer 
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provided a voltage related to the streamwise velocity componcnt. These analogue 
voltages were DC biased and amplified before being digitally sampled and stored on 
digital magnetic tape. 

For the forced jet cases, an upstream-oriented acoustic speaker was placed 4 m 
downstream on the jet centreline. Pure tone oscillations of the speaker were driven 
by a B&K 1022 beat frequency oscillator. The frequency and amplitude of the 
forcing sound were set while monitoring the unsteady pressures a t  the lip using an 
HP 35828 real-time spectrum analyzer. This was done with and without flow. The 
amplitude of the forcing was approximately 0.05% of the dynamic head based on the 
jet core velocity. 

Post processing first consisted of digitally calibrating the pressure and velocity 
data series. For the velocity data, a fourth-order polynomial was used to linearize the 
anemometer output. Other processing generally involved calculating the mean and 
r.m.s. of the fluctuating quantities, the auto- and cross-spectra and coherence based 
on long and short time segments using fast Fourier transforms and maximum 
entropy spectral estimations, respectively, and the auto- and cross-bicoherence. 
Greater details on the more specialized statistical tcchniques are presented in the 
following sections. 

3. Mode energy distributions 
This section documents the streamwise development and the radial dependency of 

the instability eigenmodes in the initial shear layer of the circular jet. These results 
encompass the region starting from the lip of the jet, downstream through the first 
pairing location, and radially across the shear layer. For the dominant instability 
modes, the modulus of the eigcnmodes was calculated from the spectral amplitude of 
the streamwise velocity fluctuations. The phase of the eigenmodes was determined 
from the pressure-velocity cross-spectrum. The phase measurements were relevant 
since the linear coherence between the velocity fluctuations in the near-field region 
of the shear layer and the pressure fluctuations at the lip of jet were high valued for 
the principle instability modes. 

The bulk of the results are presented as two-dimensional contour plots, with the 
x-axis representing the streamwise direction, starting from x/D = 0.05, and the y- 
axis representing the radial direction normalized by either the jet diameter or the 
local momentum thickness. The contour plots are oriented or show the core of the jet 
on the top of the plot and the ambient field on the bottom. In order to obtain a better 
continuous spatial distribution of the plotted quantities, the discrete value points 
were spline-fitted first in the radial direction and next in the streamwise direction. A 
very low damping coefficient was used in the spline fit in order to not alter the actual 
data values. The constant-level contour plots were generated from these spline- 
function fits. 

3.1. Jet mean characteristics 
The two-dimensional contour mapping of the local mean velocity normalized by the 
jet exit velocity for the low initial disturbance level, 1L case, a t  Re = 42000 is shown 
with a physical radial coordinate in figure 2 ( a ) .  It is apparent from this figure that 
upstream of x / D  = 0.30, the shear layer barely spreads from its initial thickness. The 
first significant growth of the shear-layer thickness occurs a t  approximately x / D  = 
0.40. The rate of spreading further increases a t  approximately x/D = 0.60. We shall 
verify later that these positions correspond respectively to the points of energy 
saturation of the fundamental and subharmonic axisymmetric modes. We expect 
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FIGURE 2. Two-dimensional mean velocity mapping: (a )  r normalized by D ;  ( b )  r normalized by 8 ;  
and (c) r.m.s. velocity mapping in logarithmic scale with r normalized by 0 (Re = 42000, 1L case). 

that these s-locations should also coincide with the points of first vortex roll-up and 
vortex pairing and that the local changes in the shear-layer growth are attributable 
to these energetic motions. 

The iso-mean velocity lines in figure 2(a )  are reproduced in figure 2 ( b )  with the 
radial coordinate now normalized by the local momentum thickness, 8 (5). This 
demonstrates that self-similar mean flow behaviour exists, even well past the point 
of pairing in this jet. 

For the same jet condition, the two-dimensional contour mapping of the total 
r.m.s. of the streamwise velocity fluctuations normalized by the jet exit velocity is 
shown in figure 2 ( c ) .  The radial coordinate is again normalized by 19 (5). The r.m.s. 
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FIGURE 3. Radial spread of velocity power spectra, in logarithmic scale (Re = 42000). (ad) x / D  
= 0.15, 0.35, 0.55 0.80 respectively. 5 dB beween each contour line. 

values are plotted on a logarithmic scale in order to highlight regions of exponential 
growth. 

3.2.  Dominant eigenmodes 
The radial spread of the power spectra of streamwise velocity fluctuations for this 
case a t  four downstream locations are shown in the contour plots of figure 3. The 
amplitude of the spectra is plotted on a logarithmic scale with 5 d B  difference 
between the contour levels. To differentiate the amplitude levels easily, the six 
highest levels are plotted as solid lines and the next five levels as dashed lines. From 
this and similar plots the dominant instability and interacted modes are identified. 
The fundamental axisymmetric mode, designated fo, occurs a t  880 Hz. Although not 
as apparent in this presentation, the other fundamental mode for this Reynolds- 
number jet occurs a t  1050 Hz and corresponds to the m = * 1 helical mode. This 
frequency is designated fi. The other spectral peaks correspond to sum and difference 
modes derived from the initial fundamental modes. These include $ f o ,  f l  - fo, f o - f l ,  

The evidence that the 1050 Hz mode at this Reynolds number is the fundamental 
fi - Sf 0 9 2f 0 -f1 and if,. 
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FIQURE 4. Two-dimensional spectral amplitude mapping of initial (a)  axisymmetric and 
( b )  subharmonic modes, with r normalized by 0 (Re = 42000, 1L case). 

m = f 1 helical mode comes from two sources. The first is the investigation of 
Drubka (1981), which was performed for the same jet and Reynolds numbers. His 
measurements were made using a velocity sensor at a fixed position in the shear 
layer, and a pressure sensor monitoring the simultaneous unsteady pressure a t  
different azimuthal positions on the exit lip. These produced quantitative 
documentation of the 180" azimuthal phase change associated with the m = & 1 
helical mode occurring a t  this frequency. The frequency associated with the 
axisymmetric mode , fa, showed no azimuthal phase change. These results have 
also recently appeared in the paper by Drubka, Reisenthal & Nagib (1989)' in their 
figure 10. 

Other evidence comes from the analysis of Mattingly & Chang (1974), who 
examined the linear stability of axisymmetric jets with exit shear layers which were 
thin compared to the jet radius. They found that both the axisymmetric and m = k 1 
helical modes had nearly the same amplification rates, and occurred at frequencies 
which differed by approximately 20%. Recent measurements by Kusek, Corke & 
Reisenthel (1990) have documented in this jet, for 22500 ,< Re < 90000, a constant 
Strouhal number, St,, for the three dominant modes, fa, f, and if,, (figure 6 of that 
reference) of 0.0144, 0.0180 and 0.0076, respectively. Based on Michalke's (1971) 
spatial theory, the initial most-amplified axisymmetric disturbance frequency for a 
hyperbolic tangent mean velocity profile corresponds to  St, = 0.017. Gutmark & Ho 
(1983) have tabulated values for St, for the fundamental axisymmetric mode from 
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FIGURE 5. (a )  Modulus and ( b )  phase of initial axisymmetric eigenmodes, mode lo 
(Re = 42000, 1L Case). 

experiments in nine different jet facilities. The values they report range from 0.012 
to 0.018. Our values for the axisymmetric fundamental and twice-subharmonic 
modes fall in the middle of this range. As theory predicts, St, for fi is 20 YO higher 
than these. Based on these results, we feel confident in identifying these fundamental 
modes based on their streamwise frequency alone. 

We focus on the fundamental axisymmetric and subharmonic modes in figure 4. 
These show iso-energy lines in the (z, r)-directions, within the shear layer, of u- 
component fluctuations associated with each mode. This figure and others like it were 
constructed from the energy in spectral peaks at particular mode frequencies a t  the 
different sampled (z, r)-locations. Each mode was defined to  fall within a frequency- 
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centred bandwidth of 54 Hz ( f27  Hz) which corresponded to 11 points in the 
spectrum for data acquired a t  2500 Hz. Within the frequency bandwidth of a mode, 
the amplitude and phase were determined a t  the frequency having the maximum 
spectral amplitude. The velocity power spectrum a t  each probe position were closely 
examined to  verify the existence of a spectral peak for each of the primary modes. 
From these results the regions where spectral peaks existed were identified. On such 
spatial maps of spectral amplitude, boundaries are plotted as thick solid lines each 
next to a dotted line pointing to the region where no distinguishable peaks were 
observed. The contour levels in these plots are in logarithmic, dB, increments so that 
equally spaced contours denote regions of exponential growth. 

In  the spectral map of the fundamental axisymmetric mode, figure 4 ( a ) ,  the 
streamwise spacing between adjacent constant-spectral-amplitude lines is invariant 
from x/D = 0.15 to 0.40, marking the linear exponential growth region. Within this 
x/D, in the region -0.6 c (~-,,~-r)/20 c 0.6, the contour spacing is relatively 
invariant with radial direction. This radial extent corresponds to a range of 
normalized mean velocity, U/U, from 0.3 to  0.8, seen from figure 2(b). The amplitude 
of the fundamental mode reaches a maximum a t  x/D = 0.45. This is observed to 
occur on the core side of the shear layer. Beyond the pairing location, a t  about x/D 
= 0.60, the amplitude of this mode decreases slowly until it no longer exhibits a 
spectral peak, as indicated by the solid-dotted line boundary beyond approximately 
x/D = 0.7. 

The spectral map of the subharmonic mode for this flow condition is shown in 
figure 4(b). Examination of this figure shows two regions of constant exponential 
growth from approximately x/D = 0 . 1 0 . 2 5  and from x/D = 0.25-0.50. Again in the 
middle portion of the shear layer, - 1.0 < (~ , ,~-r) /20  c 1.0, the contour spacing in 
the flow direction is nearly invariant with radial direction. The maximum energy of 
the subharmonic mode occurs a t  x/D = 0.60. This maximum occurs slightly closer to 
the centreline of the shear layer than for the fundamental mode maximum. 

The eigenfunction moduli for the fundamental axisymmetric and subharmonic 
modes were extracted from the spectral-amplitude spatial maps such as these. This 
amounted to taking cuts along constant-x/D lines to  generate the mode shapes 
shown in figures 5 and 6. In  an effort to  collapse these curves, the spectral amplitude 
~ ' ~ ( 2 ,  r )  was normalized by the square root of the total radial-integral energy at the 
mode frequency a t  that  streamwise location. Two criteria were set in representing the 
eigenfunction. First, the eigenfunctions were defined only a t  streamwise locations 
where spectral peaks were observed, through the middle region of the shear layer. 
Second, the mode was to be undergoing exponential streamwise growth, based on 
values taken along the mode's maximum-amplitude line. I n  the case of the 
subharmonic and difference modes, two regions of exponential growth were identified. 
The eigenfunctions in both these regions were included. The second region is marked 
in the legend of figure 6 by an asterisk next to its streamwise x/D-location. 

Based on the above criteria, the eigenfunction moduli of the fundamental 
axisymmetric and subharmonic modes are shown in part (a )  of these figures. The 
corresponding eigenfunction phase distributions are presented in part (b). In  the 
central region of the shear layer in figure 5 ,  the fundamental eigenfunction moduli 
are reasonably self-similar up to  x/D = 0.40, which is just upstream of the energy 
maxima for that mode. Outside the central region, the moduli reach self-similarity 
past x/D = 0.25. This location corresponds to  the first emergence of the 180' phase 
change seen in the phase distributions at the bottom. The 180" phase shift coincides 
with the radial position of the minimum mode amplitude. The double-peaked 
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FIGURE 6. (a) Modulus and ( b )  phase of subharmonic eigenmodes, mode if, 
(Re = 42000, 1L Case). 

behaviour of the fundamental mode moduli and 180" phase change are consistent 
with the concept of a developing vorticity wave. I n  the middle region of the shear 
layer, the phase lines of the fundamental mode are approximately equidistant, 
indicating a constant wave velocity. 

The moduli of the subharmonic eigenmodes, in figure 6, also exhibit self-similar 
behaviour in the central region of the shear layer. Even a t  x / D  2 0.30 (asterisked 
positions) in the region of enhanced resonant growth, the distributions only deviate 
slightly. The effect of subharmonic resonance can be seen in the eigenfunction phase 
distribution. There we observe an abrupt increase in the streamwise spacing of iso- 
phase lines for x / D  2 0.30. This corresponds to a decrease in the phase velocity of this 
mode, documented in a later figure, which is an adjustment to  match its phase 
velocity to  that of the fundamental mode. 

In further statistics, we wish to utilize a single velocity sensor which will follow a 
similarity line while moving downstream. Drubka (1981) had chosen to follow the 
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FIGURE 7. Streamwise development of initial axisymmetric mode and its subharmonic with 
comparison to  Drubka (1981), performed in the same facility (Re = 42000, 1L Case, U/U, = 0.6). 

constant-mean-velocity line U / U j  = 0.6. A comparison of the streamwise growth 
rates for the fundamental axisymmetric and subharmonic modes determined by 
following this line is shown in figure 7. In this comparison, Drubka’s data have been 
shifted to the level corresponding to  a 1 Hz spectral bandwidth, which is the 
standard bandwidth for all our results. To investigate the sensitivity of this result to 
following different lines, we generated similar plots obtained while moving along the 
centre of the shear layer at a constant U/Uj  = 0.5, as well as along a line which 
followed the mode streamwise-fluctuation maximum. The latter is shown in figure 8. 
Neither of these approaches takes into account the radial spreading of the shear 
layer. In  order to capture this effect on the growth of energy in these modes, we also 
plotted the streamwise development of the energy in streamwise velocity fluctuations 
in each mode integrated radially across the layer at different x/D-locations. The 
results of this approach are presented in figure 9. 

Comparing these first on a qualitative basis, we observe a number of similar 
features. Focusing first on the growth of the fundamental axisymmetric mode (open 
symbols), we observe an initial region of constant exponential growth, which 
eventually reaches a saturation limit a t  approximately x/D = 0.45. Past this point 
the energy in the fundamental mode decays. The streamwise growth of the 
subharmonic mode shows two regions of exponential growth. The first falls in the 
range from 0.15 < x/D < 0.25 and the other from 0.25 < x/D < 0.45. Upstream of 
x/D = 0.15, longer wavelength subharmonics are affected by the close proximity to 
the lip. Therefore within approximately the first quarter of the subharmonic 
wavelength, the amplitude levels are off the expected exponential growth rate 
observed downstream of this point. 
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FIQURE 8. Streamwise development of initial axisymmetric mode and its subharmonic (Re = 
42000, 1L Case, along each mode’s maximum amplitude line). Flagged symbols: no spectral peak. 

On a quantitative basis, regardless of the method used, the rate of exponential 
growth of the fundamental axisymmetric mode is virtually the same. Also, the x/D 
position of fundamental-mode energy saturation does not vary significantly among 
the four approaches. The significance of the location of the fluctuation maximum is 
that it marks the position of the first roll-up of the shear layer into a vortex. When 
scaled on the axisymmetric-mode frequency, x / D  = 0.45 corresponds to three 
wavelengths from the jet lip. 

For the subharmonic mode the rates within both regions of constant exponential 
growth are also virtually the same among the four methods. Each show the same 
x/D-location of 0.25 for the start of the enhanced resonant growth and, except for the 
similarity line U/Uj  = 0.5, each marks the location of subharmonic energy saturation 
to be at x/D = 0.6. The first position corresponds to approximately two fundamental 
or one subharmonic wavelengths from the jet exit. This location coincided with the 
change in the phase velocity of that  mode seen in figure 6 ( b )  (bottom). The 
Significance of the point of energy saturation of the subharmonic mode is that it 
marks the average location of vortex pairing. The characteristic position corresponds 
to four fundamental or two subharmonic wavelengths from the jet exit. 

The streamwise phase development for these modes is shown in figure 10. These are 
presented along the mean velocity line U/Uj = 0.6 for comparison to Drubka (1981). 
For the fundamental mode a constant phase velocity of 0.5 Uj is observed which is 
predicted well from linear theory. For the subharmonic mode the phase velocity in 
the initial growth region is the higher value of approximately 0.8 Uj, which is also in 
good agreement with linear theory. I n  the second growth region of the subharmonic, 
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FIGURE 9.  Streamwise development of radially integrated amplitude of initial axisymmetric mode 
and its subharmonic (Re = 42000, 1L Case). Flagged symbols: no spectral peak. 
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TABLE 1. The effect of external acoustic forcing and initial core broadband disturbance level 
on the initial momentum thickness (in cm), for the jet at Re = 70000. 

the phase velocity has reduced significantly to match that of the fundamental mode. 
The matching of the phase velocitics is a prerequisite for resonance of the type 
predicted by Kelly (1967). 

3.3. Effect of initial conditions on dornincrnt pigenmodes 
The remaining figures document the effect of mild axisymmetric forcing at the 
observed natural frequency f,,, and at a frequency 25 '% higher, on the development 
of the initial dominant eigenmodes and their interacting modes. In  addition to the 
pure tone forcing. the effect of broadband disturbances obtained by increasing the 
core turbulencae level is also presented. The forcing was performed at Re = 70000 so 
that in the natural condition it also provides a comparison to the previously 
documented Me = 42000 case which was known to exhibited the special jet column 
coupling. 

Thc effects of the mild external acoustic forcing and the initial core disturbance 
level on the growth of the momentum thickness of the jet at Re = 70000 are shown 
in figure 11. The initial momentum thicknesses used to normalize the growth were 
measured at x / D  = 0.05. These values are summarized in table 1. 

From table 1, it is apparent that  the initial momentum thicknesses did not vary 
significantly from one case to the other. This would indicate that even in the presence 
of these changing initial disturbance conditions, the frequencies of the most unstable 
modes, which scale with the initial shear-layer thickness, remain unchanged. 
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Figures 12 and 13 document the spatial distribution of fundamental axisymmetric 
and subharmonic mode energy in streamwise velocity fluctuations within the shear 
layer to x/D = 0.6 for the different initial states. The natural case can be directly 
compared to its lower-Reynolds-number counterparts in figure 4(a, 6). I n  doing so, 
one must account for the shorter development length which scales with the ratio of 
the fundamental frequencies and core velocities. Based on these, the development 
length for the Re = 42000 1L case is 1.40 times longer than that of the Re = 70000 
1L case. This has been taken into account in the scaling of the ordinate to allow these 
two cases to be overlayed for comparison. For such a comparison, the spatial energy 
distributions for the fundamental and subharmonic modes in the 1L conditions at the 
two Reynolds numbers are quite similar. Although we expected this based on the 
linear instability of the initial shear layer, it  was not certain if some differences might 
arise owing to the special nature of the Re = 42000 case. Comparison of these two 
cases shows that the added effect of this final frequency coupling on the global energy 
distribution in f,, and 20, in the initial region up to the point of first pairing, is 
minimal. 

The immediate effect of pure tone forcing at the natural fundamental axisymmetric 
mode frequency of 2050 Hz and at a 25 YO higher frequency of 2500 Hz is to  increase 
the initial amplitude of these modes at the jet exit, but not to greatly affect the global 
energy development. At the higher frequency, the development length shortens by 
an amount commensurate with the shorter wavelength of the unstable mode. 

We do however observe some interesting differences in the subharmonic mode 
development with the mild pure tone forcing a t  the natural fo. This is manifest in the 
increase in the size of the region, in the vicinity of the jet exit, where we could not 
detect a spectral peak (heavy line border) a t  the subharmonic frequency. In  the 
unforced (natural) cases at both Reynolds numbers, the initial amplitude of the 
subharmonic had always been larger and more defined than that of the fundamental. 
This, we shall demonstrate, is a result of downstream feedback in the form of acoustic 
waves produced during pairing. The mild forcing a t  f,, appears to inhibit this 
feedback process. Mild forcing a t  the higher frequency does not exhibit this 
characteristic so that the ' subharmonic ' fo mode exhibits a strong peak throughout 
the shear layer near the jet exit. A broadband increase in the core disturbance is 
observed to  mask spectral peaks in the initially weaker fundamental axisymmetric 
mode at  the jet lip, but not that  of the subharmonic. The x-development qualitatively 
follows that of the natural low-core-disturbance cases. 

The eigenfunction modulus and phase of streamwise velocity fluctuations for the 
fundamental and subharmonic modes a t  the higher Reynolds number, low initial 
disturbance condition were quite comparable to the lower-Reynolds-number 
equivalents in figures 5 and 6, and therefore are not reproduced here. The streamwise 
growth of these two modes is shown in figure 14. Here we have chosen to follow the 
line of maximum streamwise velocity fluctuations of each mode, which was shown to 
be representative of the whole shear layer in previous figures. Comparing this figure 
to  its lower-Reynolds-number counterpart in figure 8, we observe the same stages of 
development, namely a constant exponential growth region for the fundamental 
axisymmetric mode, an initial and secondary exponential growth region for the 
subharmonic mode, and respective saturation locations a t  x/D-values corresponding 
to  three and four fundamental mode wavelengths from the jet exit. The spatial 
growth rates of the fundamental and initial subharmonic are virtually the same for 
the two Reynolds numbers when scaled by their wavelengths, although the 
secondary subharmonic growth is somewhat higher a t  the higher Reynolds number. 
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FIGURE 12. Map of spectral amplitude levels of initial axisymmetric mode for different initial 
conditions at Re = 70000. (a) IL condition, ( b )  forced at 2050 Hz (c) forced at 2500 Hz, and 
(d )  3L condition). 
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FIQURE 13. Map of spectral amplitude lqvels of subharmonic mode for different initial conditions 
at Re = 70000. (a) 1L condition, ( b )  forced at 2050 Hz, (c) forced at 2500 Hz, and (d )  3L condition. 
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FIGURE 14. Streamwise development of initial axisymmetric mode and its subharmonic (Re = 
70000, 1L case, along each mode’s maximum amplitude line). Flagged symbols: no spectral peak. 

At this higher Reynolds number, a spectral peak at  the initial m = 2 1 helical mode 
frequency was more discernable. We therefore plotted in figure 15 the streamwise 
growth of that mode, as well as the difference mode, fl- f o .  Focusing on the former, 
we observe a constant-valued exponential growth with a spatial rate that is the same 
as that of the fundamental axisymrnetric mode. The comparable growth rates of 
these two modes had been predicted by Michalke (1971). 

The difference mode is observed to exhibit two different regions of exponential 
growth, like that of the subharmonic mode. The x/D-location of the change in spatial 
amplification of the fl - f,, mode also coincides with that point in the subharmonic 
growth. This would suggest a form of interaction between these modes which we shall 
expand upon in a later section. 

With mild forcing at the fundamental axisymmetric mode frequency, the initial 
amplitude of that mode, seen in figure 16, has increased by approximately a factor 
of ten. The initial amplitude of the subharmonic remains the same. These growth 
curves show the same characteristic features, although the point of change of slope 
in the subharmonic growth is not nearly as sharp as in the natural cases. In addition, 
the location of subharmonic energy saturation has moved slightly downstream. The 
location of the subharmonic maximum for the natural case is marked on this figure 
as xJD. 

When the jet is mildly forced at  a frequency 25% higher (2500 Hz) an exact 
fundamental/subharmonic combination was not found to exist. Instead, near- 
subharmonic modes a t  frequencies of Rf,, and $ f o  were observed, as well as a 
difference combination a t  fo .  We have speculated that the initial ‘subharmonic ’ 
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x / D  

FIGURE 15. Streamwise development of difference and helical modes (Re = 70000, 1L case, along 
each mode's maximum amplitude line). Flagged symbols: no spectral peak. 

mode was at the &fa frequency. Part of the basis of that speculation is contained in 
the eigenfunction magnitude and phase distributions in figure 17 and in the x-growth 
of the maximum streamwise velocity fluctuations in figure 18. In the former, we 
observe a good comparison to the subharmonic cigenfunctions for the natural jet, 
such as in figure 6. The streamwise growth of the & fo mode exhibits the characteristic 
' subharmonic ' development by the presence of two constant exponential regions, 
with the second having a significantly higher rate. The change in growth rate was 
also found to coincide with a change in phase velocity, seen in figure 17. 

All this can be contrasted to the spatial characteristics of the &fa mode. The 
eigenfunction magnitude and phase distributions in figure 19 show some early x- 
similarity which is subharmonic-like, but eventually further downstream it develops 
two peaks and considerable scatter. This behaviour is a primary reason why we chose 
to  present these past growth curves while following the fluctuation maximum, since 
for this case alone, the other approaches would not be representative. The x-growth 
of the &fo mode is shown in figure 20. For that mode we observe a single, constant 
exponential growth a t  a rate which is somewhat less than that of fa. We observe no 
change in slope prior to  saturation and no change in phase velocity characteristic of 
subharmonic behaviour. Energy saturation occurs a t  the same x/D-location for the 
fo and fr fa modes. 
The streamwise growth of the hfo mode also seen in figure 20 shows two 

exponential growth regions, similar to the natural difference mode ( fi -ja) in the 
natural jet. Also similar is that the x/D-location for the change in growth of this 
difference mode coincides with the point of growth rate changc of the &fa 
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FIQURE 16. Streamwise development of initial axisymmetric mode and its subharmonic 
(Re = 70000, 1L case, (natural fo = 2040 Hz),  forced at 2050 Hz, along each mode’s maximum 
amplitude line). 

‘subharmonic ’. We have not verified if the & f,, mode is a non-axisymmetric mode, as 
in the case of f i  in the natural jet. 

4. Unsteady mode selection 
The experimental results of Drubka (1981) had verified that a circular jet is 

unstable to both axisymmetric and helical modes. He had speculated, based on flow 
visualization, that  in the initial region, x / D  < 1, the natural jet alternates between 
these two modes. The answer to this speculation defines one of the principal 
objectives of our study. Further, the documentation of the unsteady behaviour and 
the effect of low-level harmonic forcing on the unsteady characteristics of the jet are 
also addressed with the use of short-time spectral estimations. 

The methods used for studying jet instabilities, such as those of Drubka (1981), are 
typically based on long-time-average statistics. For example, the spectral estimations 
determined from discrete Fourier transforms (DFT) are usually based on the 
assumption that the correlation function of each data ensemble asymptotes to zero 
by the end of the sampling interval. This limits the minimum amount of time lag 
required for proper spectral estimation. The random noise introduced by the use of 
DFT also requires averaging of ensemble spectra or frequency smoothing. This 
creates a major problem. Any alternate switching of the jet instability modes from 
axisymmetric to helical may occur in an unsteady and non-periodic manner. The 
long-time statistics required for the convergent estimation of the spectral function 
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FIGURE 17. (a) Modulus and (b )  phase of &jo eigenmodes (Re = 70000, 1L case, forced at 2500 Hz). 

using DFT will act to  mask this switching process by producing two apparent 
coexisting peaks a t  frequencies corresponding to  these two modes. I n  addition, any 
slight time-variation in the mode frequencies would result in a broadening of the 
spectral peaks. Because of these manifestations of standard DFT processing 
methods, we computed short-time single-realization spectral estimates using the 
maximum entropy method (MEM). A description of the method is presented in 
Appendix A. The discussion of the results for different initial conditions in the jet are 
presented in the following. 

4.1 Results of unsteady m d e  analyses 
The short-time instability behaviour of the three naturally developing and two 
harmonically forced jets are presented in what follows. For each case, a series of 
short-time MEM power spectra were calculated for the simultaneously sampled 
pressure and velocity fluctuation data series in the shear layer a t  the radial position 
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U / U j  = 0.6. The amplitude and phase eigenfunctions of these modes shown 
previously, documented the x-similarity of that  location. For each flow condition, 
and at  each downstream location, consecutive MEM power spectra were calculated 
from contiguous overlapping short-time-series segments. It was found that 18 time- 
series points would result in appropriate short-record MEM spectra for the cases in 
this study. Based on the data sampling frequency, these 18-point records correspond 
to approximately five to eight axisymmetric wavelengths (eight for the 2500 Hz 
forced case), or six to eight helical mode wavelengths. 

Each sequential 18-point time series was formed with a 15-point overlap of the 
preceding record. That is, each record was advanced by only three new time-series 
points, corresponding to one axisymmetric wavelength, for each consecutive spectral 
estimate. This amount was found to produce a smooth transition between contiguous 
spectra of the type shown in figure 21. To obtain the most conservative spectrum 
with emphasis on the frequency content rather than on the amplitude, an 8-point 
predictive error filter length was chosen for use with the 18-point records. This 
consistently placed the estimate into region C of our criterion map (see Appendix A), 
thereby producing spectra which have the correct frequency content but may not 
display the proper energy content. 

As a verification that the correct spectral estimates were obtained from the MEM 
approach, long-time-averaged spectral distributions were formed by ensemble 
averaging the consecutive short-time estimates. These were compared to the spectra 
for the same data properly computed using DFT. In  all cases, little difference was 
exhibited between the spectra from the two methods. Although this is not a 

FIGURE 18. Streamwise development of initial axisymmetric and Af, modes (Re = 70000, 1L case 
(natural fo = 2040 Hz),  forced at 2500 Hz, along each mode’s maximum amplitude line). 
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FIGURE 19. (a) Modulus and ( 6 )  phase of Af,, eigenmodes 
(Re = 70000, 1L case, forced at 2500 Hz). 

guarantee that every short-time spectral estimate is completely correct in all aspects, 
i t  demonstrates that  a statistical majority of these have the correct frequency and 
amplitude information. With this degree of confidence, the results obtained by this 
approach are presented. 

Figure 21 depicts the spectral evolution for the 1L case at Re = 42000 and x/D = 
0.35. This condition was chosen to demonstrate the alternate switching between the 
axisymmetric and helical modes ongoing in this jet. These two modes are denoted by 
f,, and fi a t  the top of the figure. The evolution can be followed in this figure; a t  
0 ms, when the data acquisition was started, the jet was dominated by the helical 
mode. This is evident by the peak at the frequency fi. After approximately 15 ms, the 
emergence of the peak a t  f,, marks the switching from the helical mode to the 
axisymmetric mode. The jet remains in the axisymmetric mode until approximately 
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FIGURE 20. Streamwise development of Af, and &f, modes (Re = 70000, 1L case, natural 
f,, = 2040 Hz, forced at 2500 Hz, along each mode's maximum amplitude line). 

35 ms into the acquisition run where i t  shifts back to the helical mode. The alternate 
switching between modes is apparent throughout the time evolution depicted in this 
figure with both modes appearing to exist for a nearly equal amount of time. A 
quantitative measure of the percentage of time that each mode exists follows later 
in this section. 

A similar alternate switching between these two fundamental modes is evident 
from the time evolution of spectra in figure 22, a t  the higher Reynolds number of 
70000, for the jet with low initial disturbance level at x / D  = 0.25. This contrasts to 
the evolution depicted in figure 23, which occurred when the jet was axisymmetrically 
forced at  the frequency f,,. As expected, this forcing organized the jet instability and 
effectively suppressed the initial development of non-axisymmetric (helical) 
disturbances. 

To provide a quantitative measure of the percentage of time of occurrence of these 
dominant modes, a method was developed to detect the existence of spectral peaks 
(modes). The method defined a peak to be a t  a frequency in the spectral distribution 
where its amplitude was higher than at  the two neighbouring frequencies. The use of 
such a simple definition was made possible only because of the smooth nature of 
spectra obtained from the MEM approach. This was meant to detect only the 
existence and frequency of the spectral peaks (SP). No information or criteria about 
the amplitude of the peaks was deduced from this method. Employing this method 
on the consecutive MEM spectra of both velocity and pressure data, such as shown 
in figures 21-23, the percentage of time a spectral peak exists a t  any of the resolvable 
frequencies, regardless of its amplitude, was deduced. The results are presented in the 
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FIQURE 21. Time evolution of MEM velocity spectrum 
(Re = 42000, 1L case, x / D  = 0.35, U/U,  = 0.6). 

SP histograms of figures 24-28. These were constructed from 2000 consecutive MEM 
spectra in order to be representative of the overall spectral peak distribution. 

The spectral peak histograms of the pressure fluctuations a t  the lip of the jet for 
Re = 42000, 1L condition are shown in the top of figure 24. The frequencies 
corresponding to the differencc and subharmonic modes are well defined, and have 
a high value owing to their dominant existence in the spectrum. This mirrors the 
initial self-forcing of the jet due to the coherent feedback a t  these frequencies. 

In the initial shear layer for the same jet conditions, the velocity SP histograms 
in figure 24 (b )  bring out all of the dominant modes. Since the peak detection does not 
discriminate between amplitudes, we expected the SP histograms to be more 
sensitive to even the low-amplitude modes which exist a majority of the time. This 
was evident in this figure, where as many as six modes can be distinguished. At the 
location closest to the jet exit, x /D = 0.15, the histogram is similar to that for 
the unsteady pressures a t  the lip. Following the development downstream, we 
observe the strong emergence and decay of the dominant modes which reflects their 
evolution and interactions. 

For the same jet disturbance condition at the higher Reynolds number of 70000, 
the velocity SP histograms in figure 25 reveal a more consistent existence of the 
growing dominant modes. At this higher velocity, the development of the jet by this 
last station is equivalent to that at x / D  = 1.0 for the previous figure. As in the lower- 
Reynolds-number case, the helical mode appears to exist for most of the time only 
a t  the location of the beginning of subharmonic resonance, x / D  = 0.35 for Re = 
42000; 0.25 for 70000. 
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FIGURE 22. Time evolution of MEM velocity spectrum 

(Re = 10000, 1L case, x / D  = 0.25, U / U ,  = 0.6). 

The effect of low-level forcing at the fundamental axisymmetric mode frequency 
on the Re = 70000 jet is displayed in the velocity SP histograms in figure 26. From 
these, the forcing at f,, is observed to organize the fundamental axisymmetric mode, 
evident by its significantly higher existence percentage. Near the lip a t  x / D  = 0.14, 
the SP occurrence of the subharmonic is lower in amplitude and more broadly 
distributed than in the unforced case in figure 25. By x / D  = 0.26 however, the forcing 
is observed to  better organize the subharmonic mode. As seen in this figure, the 
helical mode was strongly suppressed by the axisymmetric forcing. Speculation on 
the continued existence of a mode near the difference frequency in this forced jet is 
taken up later. 

A comparison of the SP histograms for the lip-pressure fluctuations in the forced 
and unforced condition a t  Re = 70000 was shown in figure 26(a) .  In  the forced case, 
the SP histograms reflect the additive effects of the acoustic forcing and the 
downstream influence of the developing shear layer. As a result, the distribution at 
the forcing frequency, fa, is very sharp and high valued with a strong suppression of 
adjacent frequencies. The distributions a t  the subharmonic and difference mode 
frequencies are, however, relatively unchanged. We contrast this behaviour to  that 
for the case of the jet forced at 2500 Hz in figure 27. In  this case the natural fa mode 
at  2050 Hz was strongly suppressed and replaced by a new axisymmetric mode a t  the 
2500Hz forcing frequency. The pressure histograms at the lip reveal a sharp 
distribution at the forcing frequency, as with the previous forced case. In  contrast to 
that case, the &fo ‘subharmonic’ has been sharply increased in the pressure 
histograms. In  addition, the fo difference mode is also strongly evident. These lower 
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FIGURE 23. Time evolution of MEM velocity spectrum (Re = 70000, 1L case, 
forced at 2050 Hz, x / D  = 0.20, U/U, = 0.6). 

frequencies are undoubtedly a result of downstream feedback. The high occurrence 
of Rf,, in the pressure signal further supports this being the axisymmetric 
‘subharmonic’ mode for this forced jet. 

The effect of higher initial disturbance levels in the core at Re = 70000 is presented 
in the SP histograms in figure 28. Comparing these to the low-disturbance case of 
figure 25, the higher broadband disturbances are observed to lead to less organized 
axisymmetric modes. In  particular, an almost equal predominance of the helical 
mode at all streamwise locations is observed. A similar sensitivity of the helical mode 
to initial broadband disturbance levels was reported by Drubka (1981). 

In order to  form statistics on the occurrence and interaction of the different modes 
brought out by the MEM spectral estimates, spectral peak indicator functions were 
generated. For these, the frequencies corresponding to the fundamental axi- 
symmetric mode, its subharmonic, the helical mode, and the difference mode for the 
jet were focused on. The frequencies corresponding to the axisymmetric fundamental 
mode and difference mode were identified from their predominant location in the SP 
histograms. The subharmonic frequency was then constrained to be half that of the 
axisymmetric frequency. Similarly, the helical mode frequency was constrained to be 
the sum of the axisymmetric fundamental and difference mode frequencies. The 
frequency bandwidth, within which a spectral peak would be accepted to correspond 
to one of these modes, was chosen as the average of the half-width of a Gaussian 
distribution fit of the axisymmetric and the difference mode velocity SP histograms. 
These bandwidths for the different modes are indicated on the SP histograms of 
figures 24-28. 
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FIGURE 24. MEM spectral peak histogram of (a) pressure ( b )  velocity time series 
(Re = 42000, 1L case, U / U ,  = 0.6). 

If a spectral peak was observed within the frequency bandwidth of a given mode 
on the MEM power spectrum, that mode was considered to  be present a t  that  time. 
This occurrence resulted in a value of one for the indicator function for the period of 
time that the mode existed. A value of zero indicated the instant over which the 
mode was not present. The indicator functions for the different modes, at a particular 
jet condition, were correlated to bring out any interdependence between the 
evolution of the jet instabilities. The percentage of time an instability mode exists in 
the total time series will be equal to the average value of the indicator function. 
Sample indicator functions corresponding to the MEM spectral evolutions in figure 
22 are presented in figure 29. 

Statistical summaries of the occurrence of the four principle jet modes, taken from 
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FIGURE 25. MEM spectral peak histogram of velocity time series 
(Re = 70000, 1L case, U/U, = 0.6). 

spectra of pressure fluctuations at the jet lip, are presented in table 2 for the different 
jet conditions. These statistics are based on approximately 2000 MEM spectra 
covering approximately 2 s of data acquisition for the Re = 42000 case and 4 s for the 
Re = 70000 cases. Analysis of the longest continuous data records, of 10 s for the 
Re = 42000 1L case, showed no significant differences in these statistics or their 
distributions. 

The results in table 2 provide information about the disturbance field fed back 
from the developing velocity field. In the Re = 42000, 1L case, the occurrence of the 
subharmonic mode is very high. At  this Reynolds number, the feedback of the 
subharmonic mode resulting from pairing, is significantly higher owing to the natural 
coupling of the initial shear layer and jet final Strouhal frequencies. By comparison, 
we observe that at the higher Reynolds number, where the natural coupling is not 
present, the subharmonic mode is significantly less dominant. 

At  the higher initial disturbance level condition a significant reduction in the 
occurrence of the subharmonic mode in the lip-pressure signal was observed. The 
introduction of broadband disturbances in this case has also resulted in an increase 
in the occurrence of the helical mode. One must be careful, however, about trying to 
infer to much information about the helical mode from the analysis of the pressure 
fluctuations at  the lip, since this mode did not exhibit a strong peak in the lip- 
pressure SP histograms. 

The occurrence of the difference mode, which shows a strong existence in the 
pressure signal, is only slightly reduced by the axisymmetric forcing at fo. If the 
difference mode is the result of the interaction between the axisymmetric and helical 
modes in the shear layer, the reduction in the occurrence of the helical mode might 
suggest a similar reduction effect on the difference mode. This, however, was not the 
case. 

The streamwise development of the SP occurrence for the four dominant 
instability modes in the velocity field of the shear layer is shown in figures 30 and 31 
for the different jet conditions. We focus first on the development of the subharmonic 
mode in the Re = 42000 1L case, in figure 30. There, past the influence of the lip, we 
observe a decrease in the SP occurrence towards a minimum a t  x/D = 0.35. This 

LO FLM 223 
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FIGURE 26. MEM spectral peak histogram of (a )  pressure and ( b )  velocity time series 

(Re = 70000, 1L case, natural fo = 2040 Hz, forced at 2050 Hz, U/U, = 0.6). 

location is slightly downstream of the beginning of the subharmonic resonance. 
Downstream of this location, the occurrence of the subharmonic mode increases, 
reaching a maximum a t  x /D = 0.65. This position coincides with the subharmonic 
fluctuation maximum. 

The occurrence development of the fundamental axisymmetric mode is almost the 
reciprocal of that  of the subharmonic. The occurrence of this mode increases from the 
lip and reaches a maximum at x / D  = 0.45, which is close to the position of maximum 
energy in that mode. The rapid decrease in its occurrence past x /D = 0.45 is 
associated with the rapid growth of the subharmonic mode and ultimate pairing of 
the formed vortices. Similar development behaviour of these modes occurs for the 
higher Reynolds number of 70000, 1L case, shown in figure 31 (a) .  
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FIGURE 27. MEM spectral peak histogram of (a) Pressure and ( b )  velocity time series 

(Re = 70000, 1L case, natural lo = 2040 Hz, forced at 2500 Hz, U/U, = 0.6). 

The external acoustic forcing a t  the fundamental frequency has interferred greatly 
with the natural development of the jet as depicted by the occurrence development 
of the velocity SP in figure 31 (b). As a result of the forcing at fo the occurrence of this 
mode is initially much higher than in the natural case. After a small initial increase, 
its occurrence decreases towards the natural case behaviour. By x/D = 0.35, the 
energy of the axisymmetric mode has reached a maximum. At this location the 
forced axisymmetric mode has becomes less organized, evident by a broadening of its 
SP histograms in figure 26. These results reflect the diminishing influence of the low- 
level forcing on this mode as it develops downstream. 

The forcing at f,, has moved the maximum occurrence of the subharmonic mode 
slightly downstream of the natural location. Since this maximum is associated with 
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0.12 

0.10 

0.08 

the pairing process, this low-level forcing appears to have slightly impeded that 
mechanism. 

Acoustic forcing a t  a frequency 25 YO higher than the natural fo (figure 31 c) has 
resulted in the occurrence of the forced mode reaching a maximum closer to the jet 
exit, x/D = 0.25, in proportion to  the ratio of the forced frequency to the natural f,,. 
This case is, however, more complex than the others in that the occurrence of the fo 
‘subharmonic’ is a maximum upstream of the fundamental mode energy maximum. 
The occurrence maxima of the A f,, and & fo modes bracket the locations of their 
energy maxima and that of the &f,, mode. With the introduction of broadband 
disturbances in the 3L case (figure 31d) ,  the occurrence of the subharmonic mode 
is initially lower ; however, its ultimate development as well as the x-development of 
the other modes is comparable to  the lower disturbance condition. 

Focusing on the helical mode, we observe for the lower Reynolds number, 1L case 
that its occurrence development is approximately the reciprocal of that of the 
subharmonic. The helical mode is only well organized just before the onset of the 
subharmonic resonance. Past the pairing location its percentage time of occurrence 
is half the value at its peak. At the higher Reynolds number of 70000 in both the low 
and high initial disturbance conditions, the behaviour of the helical mode is similar 
to that of Re = 42000 case. The only difference is in the percentage values, where a 
greater predominance of the helical mode is observed in the higher disturbance 3L 
condition. The axisymmetric forcing of the jet has effectively eliminated the 
occurrence of the helical mode. The curious persistence of the difference mode is also 
evident here. In  general, the streamwise development of the occurrence of the 
difference mode appears to follow that for the subharmonic mode, and at  the furthest 
downstream measurement location it was the most predominant mode. 

In order to present better any interdependence between the fundamental 
axisymmetric and helical modes, their cross-occurrence was computed from the 
indicator functions. The streamwise development of that quantity for the unforced 
jet a t  both Reynolds numbers is shown in figure 32. Also replotted for these cases are 
the auto-occurrence distributions for fo and fi. If these two modes were statistically 
independent of one another, that is, if the occurrence of one mode was not related to 

. . . . . . . . .  . . . . . . . . . . I . . .  . . . .  
- x/D = 0.15 

0.25 - --- - 
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FIGURE 29. Time series of spectral peak indicator functions 
(Re = 70000, 1L case, z / D  = 0.25, U / U ,  = 0.6). 

the occurrence of the other, their cross-occurrence would be equal to the product of 
their auto-occurrences. This product, signifying statistical independence, is indicated 
as the small-dashed line in the figure. 

It is apparent here that for most of the initial region of the jet, the cross-occurrence 
of the fundamental axisymmetric and helical modes (indicated by the dashed-dotted 
line) is zero. This is true in the time aeries taken from both the velocity and lip- 
pressure data. The only location where their co-existence was hot zero was at  the x- 
position of the beginning of subharmonic resonance. The SP occurrence correlation 
between the axisymmetric and helical modes was also calculated and found to be 
consistently near zero. These results indicate that the two moddB rarely coexist at  the 
same time in the jet. 

5. Nonlinear phase locking 
The first- and second-order spectral estimates have been used in previous figures 

to determine the growth of instabilities in the jet and to document their linear 
interactions. In  this section we are concerned with nonlinear, sum and difference 
interactions which are documented through the third-order spectrum, or bispectrum. 
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FIGURE 30. Streamwise development of spectral peak occurrence of initial axisymmetric, its 
subharmonic, helical, and difference modes (Re = 42000, 1L case, U / U ,  = 0.6). 

Mode 

Case 

Re = 42000 
Case 1L 
Re = 70000 
Case 1L 
Re = 70000 
Forced 2050 Hz 
Case 1L 
Re = 70000 
Case 31, 

fi -fo  
45.4 
(2.2) 
38.1 
(2.1) 
27.7 
(1.2) 

23.5 
(1.3) 

if0 f o  

35.0 6.3 
(1.5) (1.0) 
13.0 26.3 
(1.1) (2.9) 
15.3 64.4 
(1.9) ( 1.6) 

(0.5) (2.1) 
6.4 26.9 

Mode 

Case k f o  Rfo Afo f o  

Forced 2500 Hz (1.4) (2.4) (0.6) (1.0) 
Re = 70000 52.0 35.5 3.8 48.8 

Case 1L 

TABLE 2. Spectral peak occurrence of the instability modes in the pressure field a t  the lip of the jet 
in percent of total time. (Note : The data in parentheses are the standard deviations calculated from 
several sets of SP indicators). 

Some early references to bispectral estimates include Hinich & Clay (1968) and 
Hasselman, Munk & McDonald (1963) in applications to geophysical flows. Lii, 
Rosenblatt & Van Atta (1976) used the bispectral estimates, in conjunction with the 
equation for the rate of increase of energy in a homogeneous turbulent flow field, to 
show the source and direction of energy transfer between the frequencies. Other 
investigators have extended the use of bispectral estimations to study other complex 
nonlinear flow systems such as transition to turbulence in a two-dimensional wake 
(Miksad et al. 1982 ; Miksad, Jones & Powers 1983 ; and Solis, Miksad & Powers 1986), 
instability and feedback in an impinging shear layer (Kinsely & Rockwell 1981), and 
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FIQURE 32. Streamwise development of cross-spectral peak occurrence 6f initial axisymmetric and 
helical modes as compared with statistical independent line for ( a )  Re = 42000 and ( b )  70000 (1L 
case, U/Uj  = 0.6). 

in a Blasius boundary layer undergoing transition to turbulence (Corke & Mangano 
1987, 1989). 

In  the present work the bispectral estimates were utilized to measure and 
document the nonlinear interactions which are a part of the initial shear-layer 
instability, vortex formation, vortex pairing and feedback in axisymmetric jets. 
Because of the spatially changing energy levels in the modes of interest, the 
normalized bispectrum, or bicoherence was used. In this manner the emphasis was on 
the nonlinear phase locking which is necessary for efficient energy transfer between 
modes. Finally, to  determine the upstream or downstream influence of the flow, the 
cross-bicoherence was calculated for the simultaneously sampled, spatially separated 
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time series. These consisted of velocity fluctuations in the shear layer at  different x-  
locations along a similarity line, and unsteady pressures a t  lip at the same azimuthal 
location. Primary emphasis was placed on the interactions of the fundamental 
axisymmetric and subharmonic modes in order to document the upstream influence 
resulting from feedback, their cooperative evolution, and the downstream feedback 
of those quantities which might have a bearing on the subharmonic resonance and 
pairing processes. 

5.1. Cross-bicoherence 
The cross-bicoherence (CBC) is a measure of the nonlinear phase locking between 
frequencies in three time series. The origins of this statistical quantity are given in 
Appendix B. Its  definition is contained in equation (B 14), although the 
computationally simpler form in (B 17) was used in this study. The time series used 
in the application of this statistic were the streamwise velocity fluctuations acquired 
at different spatial locations in jet shear layer, u(z, r ,  t ) ,  and the simultaneous 
pressure fluctuations at  the lip of the jet, p ( t )  (see figure 1).  The third time series is 
formed by the sum or difference of these two. 

When interpreting the CBC estimates, one finds that the order of the interacting 
frequencies is an important parameter for determining the direction of influence. For 
two separate time series, such as are used in these studies, as many as nine (three to 
the power of two) combination orders are possible, although only six are unique. If, 
for example, a high CBC is observed between frequencies fl andf, (fl = w1/27c) and 
their sum or difference frequencies in the time series, three possible interactions could 
have taken place ; namely, that the sum or difference frequencies resulted from the 
interaction between fl and fi, or f ,  had interacted with the sum or difference 
frequency to produce f,, or that f ,  had interacted with the sum or difference 
frequency to produce fl. When the origin of a mode frequency is clear, for example 
if it results from an instability process, this may not be a problem. In the jet, 
however, because of feedback, it is not always clear whether the pressure field at  the 
lip of the jet originates the velocity fluctuations in the shear layer, or if the velocity 
fluctuations originate the unsteady pressure field at  the lip. To clarify this problem, 
it becomes necessary to look at  the streamwise evolution of the CBC while changing 
the order of processing of spatially separated time series. 

The upper frequency limit of the CBC is set by the Nyquist criterion, such that the 
sum of any two frequencies cannot exceed half the sampling frequency. From this 
frequency limit, the region of validity of a coherence plot for summed interactions 
takes the form of a right triangle bounded by a - 45' line, crossing the two Cartesian 
axes at the half-sampling frequency value. The magnitude of the cross-bicoherence 
is drawn as constant-level contours. By our convention, the processing order of 
frequencies is such that the first frequency is read from the abscissa, the second one 
from the ordinate, and the third from the point of intersection between the - 45" line 
and either of the two axes. 

Of the six possible independent processing orders, only three were found to be 
useful. The order of the processing of the CBC greatly affects the result and is 
therefore indicated on each plot by subscripts : p indicating that it was derived from 
the pressure signal, and u from the velocity signal. The magnitude of the CBC is 
plotted as contour levels, starting with the lowest level of 10 % and increased by 25 Yo 
up to 85 %. Above each CBC estimate appears the power spectra of the velocity and 
pressure signals, plotted as solid and dashed lines, respectively. These are plotted 
with an arbitrarily shifted origin and with a full dynamic range of 50dB. The 
pressure spectrum is plotted only for reference and it does not differ from one figure 
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FIQURE 33. Pressure auto-bicoherence p,,, at (a) Re = 42000 and ( b )  70000 (1L case, 

U/U, = 0.6). 

0 750 1500 2250 3000 

to another within the same condition. Also included is the linear coherence between 
the velocity and the pressure signals. This is plotted as a dotted line, and by 
definition it falls between zero and one. 

5.2.  Nonlinear phase locking for natural jet modes 
The initial phase-locking between the modes measured in the unsteady pressure field 
a t  the lip of the jet at both Re = 42000 and 70000 1L cases, is depicted in the auto- 
bicoherence, p p p p ,  shown in figure 33. This symmetrical bicoherence exhibits five 
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FIQURE 34. (a )  Velocity-pressure-pressure /3,,, and ( b )  pressurepressurevelocity /3,,, cross- 

bicoherence at x / D  = 0.25 (Re = 42000, Case lL, U/U, = 0.6). 

distinguishable peaks, labelled on the figure, which are the result of the interactions 
between the longer-wavelength modes t fo and fl - fo. Peak number 1 signifies the 
phase locking between the fundamental axisymmetric and subharmonic modes in the 
triple form i f o  + i f o  = fo. This interaction is stronger in the lower-Reynolds-number 
case where the initial and final Strouhal numbers are an integer power of two apart. 
Peak numbers 2 and 3 result from the interaction of the subharmonic mode and the 
difference mode to produce their sum and difference modes, namely, ifo+fl-fo = 
fl -ifo and ifo -fl -fo = gfo - fl. Peak number 4 results from the interaction of the 
subharmonic mode with the multiple interacted mode of frequency %fo-fl to give 
their sum a t  frequency if,, -fl. Peak 5 results from an interaction of the fundamental 
axisymmetric mode and the interacted mode fi-fo to give the mode at frequency 
2f0 - fl. The nonlinear interactions depicted by the auto-bicoherence distributions in 
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FIQURE 35. Streamwise development of amplitude, coherence, and cross-bicoherence of initial 
axisymmetric mode and its subharmonic (Re = 42000, 1L case, U / U j  = 0.6). 

this figure represents the initial self-forced 'imprint ' resulting from the downstream 
influence of growing instability and interacted modes in these jets. 

In documenting the downstream evolution of the CBC, emphasis will be placed on 
the interactions involving only the fundamental axisymmetric and subharmonic 
modes, peak 1 in figure 33. The natural behaviour of the jet a t  Re = 42000 will first 
be used to point out the essential mechanisms involved in fundamental-subharmonic 
resonance and feedback. This case will then be used to aid in interpreting the results 
in jets having different initial disturbance conditions. 

A sampling of the cross-bicoherence distributions, ppPu and pup,  for the Re = 
42000, 1L jet is shown in figure 34. This was taken at x/D = 0.25, which corresponds 
to the point where resonant subharmonic growth begins. A composite of results from 
similar figures taken a t  different x/D-locations is presented in figure 35 in order to 
document the fundamental/subharmonic interaction in this jet. This figure includes 
the streamwise development ofp,,, and P r p p  for peak 1, of the linear coherence, rup, 
and of the streamwise velocity fluctuations a t  fa and $fa (reproduced from figure 7) .  

At the closest measurement location, x / D  = 0.05 in figure 35, the linear coherence 
of the subharmonic mode is approximately 50% whereas for the fundamental it is 
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FIGURE 36. Pressurepressurevelocity cross-bicoherence at Re = 70000, x / D  = 0.15 
(case lL,  U/U, = 0.6), for (a) unforced jet at 2040 Hz and ( b )  jet forced at 2050 Hz. 

almost zero. The small peak of approximately 40% in pupp  and the lack of a peak 
in ppPu indicate that the subharmonic mode at this location is phase locked to the 
pressure field at the lip, and that no such phase locking is present for the fundamental 
mode. The relative difference between the magnitudes of puPp and the linear 
coherence, Tup, at the subharmonic frequency indicate that the subharmonic mode 
velocity fluctuations at this most upstream position are linearly phase locked to the 
pressure fluctuations at the lip. 

A t  x/D = 0.15, the linear coherence of both modes has increased slightly. The 
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cross-bicoherence magnitudes has also increased to  a value approximately the same 
as for the linear coherence. This indicates the beginning of nonlinear interaction 
between f o  and i f , .  By the next location, a t  x/D = 0.25, an abrupt increase in the 
growth rate of energy at $ fo  marks the beginning of subharmonic resonance. ppPu at  
this location is approximately 90 % which, when accompanied by the respectively 
low puPp of approximately 20 YO, indicates a nonlinear phase locking between f o  in the 
velocity field and fo in the pressure field a t  the lip. The arrow pointing downstream 
in the growth curve in this figure signifies this upstream influence of the lip on the 
subharmonic mode leading to subharmonic resonance. 

At x/D = 0.45, p u p p  is now larger than p p p u ,  suggesting a nonlinear phase locking 
between i f o  in the velocity with f o  in the pressure. At this same location, the energy 
a t  f o  has reached a maximum. We associate this with the first roll-up of the shear 
layer into discreet vortices spaced at  the fundamental wavelength. The larger p u p p  
suggests that this energetic process results in feedback of fundamental mode energy 
from the velocity field to the pressure field a t  the lip. This downstream influence is 
indicated by the upstream-facing arrow at the frequency f o .  It is drawn lightly to 
signify that fluctuations a t  f o  are only weakly felt a t  the lip. 

At x/D = 0.65, ppPu is approximately 100 YO and significantly larger than pup,. At 
this location, the energy a t  t fo has now reached a maximum. This is associated with 
the approximate point where the formed vortices pair. This indicates that this 
energetic process results in a nonlinear phase locking between the fundamental mode 
in the velocity and the subharmonic mode in the pressure. This near-perfect phase 
locking is strong evidence of feedback of subharmonic mode energy from the velocity 
field to the pressure field at the lip. This downstream influence is drawn as a bold 
arrow to signify that i t  is strongly felt a t  the lip. 

5.3. Effect of initial disturbances on nonlinear development 
The effect of forcing the Re = 70000, 1L jet is summarized in figure 36-38 a t  the 
fundamentally important x/D-locations corresponding to the beginning of sub- 
harmonic resonance, a t  the point of fundamental mode energy saturation and a t  the 
point of subharmonic mode energy saturations. At the first location at x/D = 0.15 in 
figure 36, the cross-bicoherence pppu shows a value a t  peak 1 indicative of the 
fundamental-subharmonic interaction resulting from the upstream influence of the 
lip, seen previously at the lower Reynolds number. At the bottom part of the figure, 
when the jet was forced at f o ,  we observe that this peak is not present. This suggests 
that under the conditions of this mild harmonic forcing, the natural initial nonlinear 
phase coupling between the fundamental and subharmonic modes has been impeded. 

At x/D = 0.32 in.figure 37, the high peak 1 in pupp in the unforced jet indicates the 
feedback of energy a t  the fundamental mode frequency to the lip, again consistent 
with the lower-Reynolds-number case. The broad diagonal shape of this peak for the 
jet forced at f o ,  however, suggests that the frequency fed back to the lip in this case 
is phase locked to a broad range of near-subharmonic frequencies. Such interactions 
would produce the broad peak in the autospectrum a t  the subharmonic frequency 
seen a t  this x/D in this case. Also observed in the autospectra are the discreet 
sideband modes to the fundamental in the forced case. The interaction to produce 
these is seen by the three peaks in / Iupp centred at the fundamental frequency on the 
CBC abscissa and aligned to the ordinate frequency of approximately 160 Hz. The 
160 Hz frequency may be fundamentally important since it corresponds to a 
Strouhal number, fD/U, = 0.4, which is the value generally associated with the jet 
column mode (Ho & Huerre 1984). 
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FIGURE 37. Velocity-pressure-pressure cross-bicoherence at Re = 70000, x fD = 0.35 
(case 1L, U/U, = 0.6), for (a) unforced jet at 2040 Hz and ( b )  jet forced at 2050 Hz. 

By x / D  = 0.45 in figure 38, the high value of peak 1 in ppPu in the forced jet 
indicates that the fundamental and subharmonic modes have achieved a con- 
centrated phase locking, comparable with the unforced jet. This subharmonic is fed 
back and strongly felt at  the lip. There also remains some weak nonlinear coupling 
associated with the fundamental mode sidebands. 

The effect of forcing the jet a t  a frequency 25% higher than the natural fo is 
depicted in figure 39. This shown in figure 39 (a) a t  the x-position of the beginning of 
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FIGURE 38. Pressurepressurevelocity cross-bicoherence at Re = 70000, x / D  = 0.45 
(case lL,  V / U ,  = 0.6), for (a) unforced jet at 2040 Hz and ( b )  jet forced at 2050 Hz. 

enhanced growth of the bf,, mode which was seen in figure 18. In this case, we now 
observe a high organization of the jet with strongly coherent nonlinear interactions. 
Although the linear coherence of the instability modes for the jet forced at fo is 
comparable, cross-bicoherence levels a factor of two greater exist for this 2500 Hz 
forced condition, demonstrating a much stronger nonlinear phase locking of these 
modes in this instance. The interactions involving the & fo mode are apparent in this 
figure as the band of contour lines a t  the frequency of 1136 Hz. The source of the non- 
exact subharmonic is probably a result of the feedback mechanism which acts to 
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FIGURE 39. Velocity-pressurepressure cross-bicoherence at (a)  x / D  = 0.14 and ( b )  pressure- 
pressurevelocity cross-bicoherence at x / D  = 0.26 for jet forced at 2500 Hz at Re = 70000 (case lL,  
UfU, = 0.6). 

select the closest subharmonic frequency which also gives an integer number of 
wavelengths over the distance from the point of pairing back to the jet lip. This mode 
interacts with a multitude of other modes to transfer energy to both higher and lower 
frequencies in discreet fashion to fill the spectrum. The hfo mode, although being 
close to, is distinguishable from the 160 Hz mode seen in the previous forced case. 

Further downstream near the location of energy saturation of the &fo mode, the 
strong nonlinear phase locking persists. This can be seen in the pppU distribution in 
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figure 39 (b) .  At this location, the linear coherence, rupr of the forced f o  and interacted 
A f o  and f ,  modes are also still quite high. The large value of pppu  a t  the frequency 
intersection of & f o  and fo  mode in the 
velocity fluctuations is a product of that summed interaction. This is also consistent 
with the insignificant level of the linear cohcrence a t  the A f o  frequency. 

f, in the pressure signals suggests that the 

6. Discussion 
6.1. Pairing process and feedback 

In the initial region of the jet shear layer, up to four wavelengths of the fundamental 
mode, the axisymmetric and subharmonic modes grow exponentially in amplitude, 
evolve, and interact, leading to the formation of vortical structures and finally 
pairing. Vortex formation and pairing were observed to result in relatively rapid 
changes in the streamwise growth of the shear layer, and to  provide effective sites for 
downstream influence of the flow on the unsteady pressure field a t  the jet exit lip. 

At the lip of the jet, a degree of nonlinear phase locking between the fundamental 
axisymmetric and subharmonic modes was found to exist initially. This was seen 
from the auto-biocoherence distribution in figure 33. Nonlinear phase locking also 
existed between other frequencies in the pressure field a t  the lip as a result of sum and 
difference interactions with the longer-wavelength t f o  and ( fi - f , )  modes. These 
represented a natural tuned self-forced condition of the initial shear-layer growth. 

Within the first approximately two fundamental wavelengths downstream of the 
jet exit, the fundamental and subharmonic modes grow independently. Their initial 
amplitudes are commensurate with the degree of tuned self-forcing as well as other 
competing background disturbances. Evidence of their independent growth comes 
from the difference in their phase vclocities (figure lo), which makes energy transfer 
inefficient. The lack of intercomponcnt mode locking was evident in the low levels of 
cross-bicoherence in this early region at  the top of figure 35. 

In  this early stage, the fundamental mode is best characterized by a wave 
representation with a double-peaked eigenfunction modulus. The fluctuation 
minimum between these corresponded to  the location of a 180" phase shift in the 
eigenfunction phase. Prior to vortex formation, there existed virtually no growth in 
the momentum thickness downstream, and the mean profile closely followed a 
hyperbolic tangent distribution. When these characteristics are combined, one can 
see the origin of agreement to analysis with linear, spatial, inviscid, parallel stability 
theory. 

At the end of this region (two fundamental wavelengths from the jet exit), the 
secondary enhanced growth of the subharmonic begins. This was marked by a 
reduction of the phase velocity of the subharmonic to match that of the fundamental. 
This change was seen as the rapid shift in the subharmonic eigenfunction phase at 
x / D  = 0.3 in figure 6, requiring less than a quarter of a subharmonic wavelength to 
make the transition. 

In  the process of changing phase velocities, the linear coherence, rup, is low. This 
would be expected since this statistic is a measure of linear phase locking and the 
subharmonic phase development is changing a t  this location. In contrast to  this, the 
high cross-bicoherence, p p p u ,  for a fundamental/subharmonic interaction indicates a 
strong degree of nonlinear phase locking between these modes. When combined with 
the lower p u p p  at  this location this documents phase locking between the 
subharmonic in the pressure field a t  the lip, and the fundamental in the velocity field 
a t  this x /D .  We interpret this as the upstream influence of the pressure field at the 
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lip to aid in adjusting the phase velocity of the subharmonic modc, satisfying the 
resonance condition and leading to its enhanced growth. 

The region of influence of the lip is fairly localized, and does not extend far 
downstream of this point. This was evident from the decreasing pppu  and increasing 
pupp  past x / D  = 0.3 in figure 35, prior to fundamental mode saturation. 

Fundamental mode saturation occurs one wavelength downstream of this point 
(three wavelengths from the jet exit). This process is associated with the first roll-up 
of the shear layer into a vortex ring. The high p u p ,  for a fundamental/subharmonic 
interaction indicates the strong degree of nonlinear phase locking between these 
modes which is associated with this event. The direction of the interaction is inferred 
from the simultaneously low ppPu.  These indicate a nonlinear phase locking between 
the subharmonic in the velocity, and the fundamental in the pressure (at the lip). We 
interpret this to result from feedback of purc-tone acoustic disturbances at the 
fundamental frequency from the point of vortex roll-up back to the jet lip. This 
feedback was indicated by the light arrow in figure 35. The energy in pressure 
fluctuations at the fundamental frequency a t  the lip is however relatively small, 
suggesting that the downstream influence of this mode is weak. 

The subharmonic mode continues to grow exponentially for another fundamental 
wavelength downstream of the point for fundamental mode saturation, four 
wavelengths from the lip. Since the beginning of its secondary growth, its growth 
rate was close to that of the fundamental. When the subharmonic mode saturates, 
a nearly perfect nonlinear phase locking existed for the ppPu fundamentall 
subharmonic interaction. When combined with the relatively low pupp ,  this indicated 
that the phase locking occurred between the fundamental in the velocity and the 
subharmonic in the pressure (at the lip). We interpret this to result from acoustic 
feedback at the subharmonic frequency produced by the energetic process of vortex 
pairing which is associated with this energy maximum. This process was indicated by 
the bold arrow pointing in the upstream direction in figure 35. A larger, dominant 
peak in the pressure spectrum at the subharmonic frequency indicates that  the 
downstream influence of this mode is relatively strong. The dominance of this mode 
is similarly seen in the spectral-peak historgram of MEM spectral estimates in figures 
24 and 26. The influence is especially strong in the 42000 Reynolds number jet for 
which the final frequency coupling existed. However, the importance of subharmonic 
mode feedback is not restricted to only this extra special condition. 

6.2. Non-axisymmetric modes 

Analysis by Michalke (1971) and Mattingly & Chang (1974) had indicated that the 
initial region of the jet is equally unstable to both axisymmetric and non- 
axisymmetric (helical) modes. I n  a previous experiment using the same facility as in 
this investigation, Drubka (1981) had documented the m = f 1 helical mode in 
addition to the fundamental axisymmetric modes. Although his observations were 
based on long-time-averaged spectral estimates, he speculated that the initial region 
alternates between these fundamental states. In  the present experiment, long-time- 
averaged spectra brought out the existence of these two modes. The streamwise 
frequency of these and the dependence on Reynolds number was found to be in 
agreement with Drubka’s values. To answer Drubka’s speculation, short-time mode 
analysis was performed using maximum entropy spectral estimates in order to 
observe their temporal behaviour. 

Mode detection was based on the existence of spectral peaks in the short-time 
estimates at the frequencies for the fundamental axisymmetric and m = f 1 helical 
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modes, respectively. The temporal evolution of these modes was seen in a qualitative 
sense in figures 21 and 22 for the natural jets. These indicated a lack of coexistence 
and apparent non-deterministic switching between fundamental states. This was 
quantified in spectral-peak occurrence distributions of the type shown in figures 30 
and 31 and in the cross-occurrence distributions in figure 32. 

The spatial exponential growth rate of the helical mode was found to be the same 
as that of the axisymmetric mode, in agreement with theory. The average initial 
amplitudes close to the jet exit were also very similar. In addition, their streamwise 
extent of constant exponential growth was found to  be quite comparable so that their 
points of energy saturation coincided closely. Presumably then, the dominant mode 
at any instant is likely to be the one that had the highest initial amplitude forcing 
due to randomly arriving axisymmetric or non-axisymmetric disturbances a t  the jet 
lip. When the jet was disturbed by far-field harmonic acoustic disturbances which 
excite axisymmetric modes, the existence of the helical mode was effectively 
suppressed. In the case of non-axisymmetric modes, a disturbance which produces a 
180' azimuthal phase difference around the exit lip would be suitable to  produce a 
m 1 helical mode. 

One might expect that the percentage of occurrence of each of these fundamental 
modes would have a constant value throughout the jet initial region. The spectral 
peak occurrence distributions in figures 30 and 31 show that this is in fact not the 
case. This suggests that these modes can overtake and suppress each other through 
interactions further downstream. For example, the occurrence of the helical mode 
was observed to reach its maximum at the x/D-location associated with the 
beginning of subharmonic resonance. At this location, the occurrence of the 
subharmonic is a minimum. 

The percentage of time that both the fundamental axisymmetric and helical modes 
coexist was found to be negligibly small. The only exception was at  the beginning of 
subharmonic resonance where their simultaneous occurrence reached approximately 
4%. It was only in this region that the cross-bicoherence showed a nonlinear phase 
locking between the axisymmetric subharmonic and helical modes to produce the 
difference mode fi -t fo .  The otherwise general anti-correlation between the 
occurrence of these two fundamental modes suggests that each might be a basin of 
attraction which suppresses the existence of the other. 

Given this physical picture for the alternate existence of these two fundamental 
modes, we are left in somewhat of a quandary as to the origin of the difference mode, 
fl - f o .  That is, how could these two modes interact to produce their difference mode 
if they do not coexist 12 

We have observed the existence of this mode in the pressure and velocity time 
series. Along with the subharmonic mode, it dominates the lip-pressure field to 
produce a number of nonlinearily phase-locked modes formed from sum and 
difference interactions, which provide a level of initial jet self-forcing. The spatial 
amplification of the fi - fo mode exhibits two constant exponential growth regions, 
similar to the subharmonic. The x/D-location of the change in exponential growth is 
a t  the same point as that of subharmonic. Also, their spatial growth rates are nearly 
the same. Since the difference frequency is far from the region of maximum linear 
amplification, this high growth attests to the nonlinear energy transfer to this mode. 
Since the spatial growth mimics that of the axisymmetric subharmonic, we expect 
that these two modes are related. If we look to  the auto-bicoherence, p p p p ,  at the lip 
of the jet in figure 33, peak 2 documents a nonlinear phase locking between the 
subharmonic and difference mode in the form fo +fi - f o  = f l  -+ f,,. This interacted 
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mode in the unsteady pressure is observed to interact with the subharmonic in the 
unsteady pressure in peak 6 of the ppPu in figure 34, to produce nonlinear phase 
locking with the helical mode at f, in the velocity a t  the beginning of secondary 
exponential growth. Therefore, we do observe a close link between the f, - fo and + fo 
modes which originates in the fed-back unsteady pressures a t  the jet lip and, through 
the lip influence, had a downstream effect to produce a nonlinear phase locking 
between ifo and f,. Recall that the only point of non-zero coexistence of the fo and 
fl modes was at the location of the emergence of peak 6 in figure 34, which was also 
the location of the occurrence maximum of the fl mode. 

When the jet was excited by far-field acoustic pure tones a t  the axisymmetric 
mode frequency, fo, the helical mode a t  frequency fl is effectively suppressed. But, 
was it eliminated totally ? Examining figure 31 ( b )  shows some traces of occurrence of 
the fi mode (dotted) which still contain the same x/D trends as in the natural case, 
shown in the plot above it. Remember that the acoustic excitation was not meant to 
totally overwhelm the jet but rather to favour certain modes. 

The overall occurrence levels of the fl-fo mode had been reduced by the 
axisymmetric excitation. This is seen both in the pressure field a t  the jet lip and by 
comparing the distributions in figures 31 (a)  and 31 ( b )  (dash-dotted). The reduction 
is not linearly proportional to the lowering of the fi occurrence. However, since the 
growth of thef, - fo mode is also nonlinearily linked to the t fo mode, which has been 
shown to be resonantly locked with the fo mode, even a trace amount of energy a t  
fl could result in a disproportionate energy transfer into the helical mode at the 
difference frequency. Recall that the occurrence statistics make no distinction 
between the amplitudes of these modes, only their existence in the time series. In  
fact, the amplitude of the fl-fo mode, relative to fo, is significantly less with 
axisymmetric mode excitation. 

6.3. Effect of initial forcing 

In addition to the pure-tone acoustic excitation a t  f,,, acoustic forcing away from the 
natural axisymmetric mode and broadband core disturbances had been imposed to 
study their effects on the initial development of unstable modes in the jet. In  the 
previous section the effect of axisymmetric mode forcing on the helical modes was 
discussed. A sensitive and consistent indicator of the x-development of the unstable 
modes is the mode occurrence distributions such as in figure 31. We therefore look to 
these to show some of the effects of the weak acoustic excitation. In  terms of the 
axisymmetric modes, the forcing at fo gave the expected initial increase in the 
occurrence of that  mode near the lip. The level of occurrence, however, had gradually 
decreased towards the unforced behaviour by the location of fundamental mode 
saturation. Recall that the level of forcing was only 0.05% of the dynamic pressure 
which would be of the same order as the natural feedback levels. 

We observe in Figures 31(a) and 31(b) that the forcing at fo had altered the 
occurrence development of the subharmonic mode (solid line). In particular, 
upstream of the location of the beginning of resonant subharmonic growth (x/D = 
0.25), the occurrence levels are significantly lower for that mode. I n  the region of 
secondary growth, the occurrence of the subharmonic increases a t  a slower rate and 
reaches a maximum further downstream. Since this maximum is associated with 
vortex pairing, the low-amplitude forcing a t  fo appears to have slightly retarded this 
process. 

To understand this effect better, we look a t  the fundamental/subharmonic 
interactions brought out by the CBC in figures 36-38. Recall that the x/D-locations 



304 T .  C. Corke, F .  Shakib and H .  M .  Nagib 

for these three figures corresponded to the fundamentally important positions : the 
beginning of subharmonic resonance aided by the upstream influence of the unsteady 
pressures a t  the lip ; the saturation of the fundamental mode which provides weak 
feedback a t  f o  to the lip ; and the saturation of the subharmonic mode which provides 
strong feedback a t  i f o  to the lip. By interpreting these figures, the low-amplitude 
forcing at f o  had diminished the upstream influence of the lip by decoupling the 
nonlinear phase locking between the f o  and ; fo modes. I n  essence, in this initial region 
there are two frequency sources feeding the unsteady pressure field at the lip. The 
first is due to the acoustic input from a sine generator and speaker. The second is due 
to the response of the jet and the closed-loop feedback a t  t fo .  These two frequencies, 
being derived from separate sources, are therefore not phase locked. 

We can observe some subtle effects of the lack of initial phase locking of these two 
modes, for example in the beginning of secondary subharmonic growth in figure 16. 
Generally, we have observed a sharp change in subharmonic growth which was 
accompanied by a rapid change of phase velocity of the subharmonic to match that 
of the fundamental. With the mild forcing a t  fo, we observe a much more gradual 
change in growth of; f o ,  which is also delayed relative to the downstream development 
of the fundamental. This can also be traced to a reduction in the local spreading rate 
of the jet between x/D = 0.35 and 0.45 in figure 11 ,  which is in the region of 
secondary subharmonic growth. Past the point of pairing, the spreading rate of the 
jet forced a t  f o  has overcome this early reduction and slightly surpasses that of the 
natural jet. This behaviour might be due to the observed additional nonlinear phase 
locking with the column mode (160 Hz) that appeared only in this specific forced 
case. 

A recent paper by Monkewitz (1988) predicts subharmonic resonance on the basis 
of the fundamental mode achieving a minimum amplitude, dP/Uj = 0.015. Based on 
this, we can compare the amplitudes of the fundamental axisymmetric modes at  
the x-position of first enhanced subharmonic growth (x,/D) for the different cases 
examined here. In  the unforced jet, 1L condition, a t  both Reynolds numbers, the 
maximum streamwise velocity fluctuation levels seen from figures 8 and 14 was 
roughly the same and equal to  0.0003. This of course is considerably below that 
predicted by Monkewitz, but in experiments the absolute levels are somewhat 
ambiguous since they vary with the spectral bandwidth. For example, Monkewitz’s 
good agreement to Drubka’s Re = 42000 data is two orders of magnitude off when 
the amplitudes are converted to the standard 1 Hz bandwidth, as we had done in the 
comparison in figure 7. 

Therefore, rather than compare absolute levels, we can examine effects of different 
initial conditions, most notably between unforced and forced jets. Specifically, this 
involves our jet a t  Re = 70000, with the spatial growth curves seen in figures 14 and 
16. I n  this comparison, for the forced jet, we observe an almost order of magnitude 
increase in the threshold level of the fundamental mode a t  the x-position of 
secondary subharmonic growth. Since we have interpreted the effect of our mild 
forcing as disrupting the natural feedback mechanism and delaying subharmonic 
resonance, this result seems to support that mechanism over one strictly based on 
amplitude alone. 

Forcing the jet a t  a frequency 25 YO higher than the natural selected f o  resulted in 
a more strongly organized jet with strong feedback at f o  and fo frequencies. The 
initially shorter-wavelength fundamental frequency and strong resonant interaction 
with the Rfo mode resulted in faster spreading in this case. 

The non-exact &fo ‘subharmonic’ in this case was probably selected by the flow in 
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order to  satisfy a constraint imposed by feedback that there be an integer number 
of wavelengths from the feedback source, in this case the x/U of pairing, back to the 
lip of the jet. This selection resulted in a much stronger nonlinear phase locking and 
a high degree of organization of a broad band of discreet sum and difference modes 
that was not apparent with weak harmonic forcing. This exercise demonstrates an 
efficient means of control of the early jet instabilities by making use of the natural 
upstream influence of the lip and the downstream influence of related modes which 
are associated with the energetic motions of vortex formation and successive 
pairings. 

Observations such as resonant mode selection and harmonic spectra indicate that 
a convectively unstable flow (a cold axisymmetric jet) in the presence of feedback 
appears to  share some of the features related to absolutely unstable flows. Such a 
distinction has profound implications with respect to the possible existence of 
deterministic chaos in jets as well as issues of flow controllability. 

7. Conclusions 
The results have documented the existence and exponential growth of the two 

fundamental modes in the axisymmetric jet shear layer, namely the axisymmetric 
and m = f 1 helical modes. In the case of the former, a parametric interaction 
between i t  and its subharmonic was found to exist and to  be an important factor in 
the early development of the jet. This interaction was marked by a matching of their 
phase velocities, requiring a decrease in the phase velocity of the subharmonic, the 
resonant exchange of energy from the fundamental mode to the subharmonic, and a 
resulting enhanced exponential growth of the subharmonic mode leading to large 
amplitudes and eventual energy saturation. A key factor of this process was the 
recursive feedback of energy from the sites of the first vortex rollup and vortex 
pairing. These acted to  produce a self-forced phase locking of the initial fundamental 
and subharmonic modes which later led to the early resonant growth of the 
subharmonic mode, within two fundamental axisymmetric wavelengths. This 
resonant feedback mechanism gives the jet some of the features attributed to 
absolutely unstable flows, which may have profound implications for their 
controllability. 

Underlying the resonant organization seen in the axisyrnmetric modes was the 
development and growth of the m = & 1 helical modes. Short-time spectral estimates 
were used to document the temporal evolution of the helical and axisymmetric 
modes. These indicated a lack of coexistence and apparent non-deterministic 
switching between these two fundamental states. At any time, the dominant mode 
was likely to  be the one with the higher initial forcing level due to randomly arriving 
axisymmetric or non-axisymmetric disturbances at  the jet lip. With this scenario in 
mind, a low-dimensional temporal model based on the competition between these 
two modes may be useful to  capture the early random nature which we attributed 
to  spectral broadening a t  these mode frequencies in the initial jet exit region. 
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Appendix A. Maximum entropy spectral estimates 
Recently, spectral estimations based on the maximum entropy method (MEM) 

have been adopted at IIT for the analysis of data series from unsteady fluid 
dynamics experiments. The main feature of this method is that it allows the 
determination of spectra for exceedingly short time series where methods based on 
DFT fail to produce accurate results. Extensive documentation of the characteristics 
and usage of this method has been done by us on time series derived in this and other 
fluid flows. The following discussion is meant to provide an overview of the 
theoretical basis for the method and to document its use in this study. 

The maximum entropy time series is determined to be the one in which the 
entropy, E(S) ,  of the power spectrum, S(o ) ,  defined as 

E(S)  = logS(w)dw, I:," 
is a maximum, under the constraint that the spectrum also be consistent with the 
first M +  1 measured lags of the auto-correlation function, R,. The autocorrelation is 
defined to be the inverse Fourier transform of the power spectrum, namely 

R, = L I n S ( w )  eiwkAt d w  ( -M < k < M). 

Here, At is the time increment, k is a discrete time index, w is the angular frequency, 
w, is the angular Nyquist frequency, and i is the square root of negative one. 

Defining the Lagrange multiplier A,, the solution for S ( w )  which maximizes this 
variational problem is 

1 
S ( w )  = 5 hkeiwkAt 

k--M 

where the h satisfy the constraint equation (A 2). 
The traditional transform notation is obtained by setting 

, (A 4) = eiwAt 

where 
S(Z) = ...+ R-M~-M+...+Ro+...+RMzM+... 

and R,, R,, ..., RM are known M + l  auto-correlation coefficients. The power 
spectrum, S(w),  is related to  S(z)  by the z-transform of the auto-correlation function, 
namely 

In factored form, 
S(z )  (-) ( z  = e-iwAt 1 (A 5)  

where 
A M @ )  = l+a,z+ ...+ a M P  

is a (M+ 1) length prediction-error filter with variance at. Expressing (A 6) in the 
frequency domain and combining i t  with (A 3), one obtains the MEM spectral 
estimate 

k--M 



Mode selection and resonant phase locking in axisymmetric jets 307 

The right-hand side of the equality in (A 8) can also be found by modelling the time 
series as an auto-regressive series of order M .  Such a model thereford maximizes the 
entropy in the time series. 

The problem that remains is to compute the prediction-error filter coefficients 
A M ( o ) ,  and to determine the ‘best’ order, M ,  for the auto-regressive model. The 
approach to the first part is due to Burg (1967) who suggested minimizing the 
average of the sum of both the mean-square prediction and hindsight errors, P , ,  to 
find the first coefficient all .  For an N-point data series, that quantity is defined as 

The order, M ,  of the prediction-error filter remains the key parameter in 
calculating the most appropriate spectrum. Many empirical studies utilizing 
synthetic data having known spectral content have been conducted in order to 
develop measures for determining the proper filter length. Reisenthel & Corke (1983) 
have studied a number of these and identified four regions of behaviour with 
increasing filter length, M .  In the first region, A, with the shortest filter lengths, only 
a smooth envelope of the distribution having no spectral peaks is obtained. In  the 
next region, B, which starts from the end of the region A, with increased filter length, 
the spectral peaks that emerge have the correct amplitude and frequency ; however, 
some combining of closely neighbouring peaks may occur at  lower frequencies. In 
region C all of the spectral peaks are identified ; however, their amplitudes may not 
be correct. Finally in region D peak splitting is observed to occur, leading to incorrect 
spectral estimations. 

These criteria were used to determine the proper filter length for the analysis of the 
data series in this study. In the approach here the method was used to detect the 
existence of the various modes and to follow their spatial and temporal evolution, 
without interest in their amplitude. Therefore a prediction-error filter length was 
chosen which placed us within the region C above described. Owing to the nature 
of the time series, all of the selection criteria had shown a broad C region for all of 
our flow cases. 

Appendix B. Cross-bicoherence 
The cross-bicoherenae is a measure of the nonlinear phase locking between 

frequencies in three time aeries. In a general sense, these time series are represented 
as ul( t ) ,  u2(t), and ua(t). For simplicity these are not shown to be a function of their 
spatial position. The Fobrier transforms of these time series are defined as 

where 
wavenumber, and i is the square root of negative one. 

denotes the transformed function in the wavenumber domain, w is the 
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The first three statistical moments of these time series are given as:  

the first order, 

the second order, 

and the third order, 

Ri = ( ui( t ) ) ;  

Rij(7) = (ui(t)uj(t+7)); 

i = 1 ,  2, 3 ;  

i , j  = 1,2,3;  

Rijk(71,72) = (u i ( t )u j ( t+71)Uk( t+72) ) ;  i,j, k = 1,  2, 3, (B 5 )  

where () denotes the realizations ensemble average, and 7 is a time delay. 
The first-order moment is the mean of the time series. The second-order moment 

is the correlation. The correlation is a measure of the linear interaction between 
quantities in the two time series. The correlation can also be determined from the 
Fourier transform of the times series, namely 

where * denotes the complex conjugate. The product ( Q , ( w ) G f ( w ) )  is the cross- 
spectrum between ui(t) and uj(t). 

The third-order moment is a measure of the linear and quadratic interaction 
between the three time series, as seen in (B 5 ) .  In  order to better appreciate the origin 
of the bispectrum it  is helpful to derive the relation between the third-order moment 
and the Fourier transform of the time series. The Fourier transform of Rijk is 

Notice that 8,, is a function of two wavenumbers, w1 and w2. 
In  (B 7) ,  replacing the time series by their Fourier integral transform, as defined 

in (B 2), and interchanging the order of integration and the ensemble average, the 
following equation can be derived : 

2) d o  dw' dw" d71 d ~ ~ .  (B 8) e iwt+iw ' ( t+ i l )+ iw"( t+r  

(.it,(w) i i j (w ' )  Qk(w")) e-io~r~-iw~7~ 

By taking advantage of Kronecker delta function relations 

and 

[ywf(o') S(w-w' )  dw' = f ( w ) ,  

(B 8) simplifies to 

~ * , ~ ( w , ,  w 2 )  = (iii(w) c j (wl )  c k ( w 2 ) )  e i (w+wl+w 2) t dw. (B 1 1 )  

With the assumption that the series is stationary, rigorous algebra is needed to  
simplify the above equation. However, in order to avoid these steps, a shorter 
approach can be adopted. Knowing that the result of the above integral is not a 
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function of time, which requires w + w1 + w2 to be equal to zero, the following relation 
is derived: 

4 , k ( w l , % )  = ( ~ t ( w ) ~ , ( w , ) . i i ( w , ) ) ~ ( w + ~ , + w , ) .  (B 12) 

Defining C*(w)  as the complex conjugate of u ( w ) ,  then 

~ y k ( w 1 ,  w2) = <% (4 C, ( 0 2 )  C: (w1 +%I).  (B 13) 

The function Etjk (wl, w 2 )  is the cross-bispectrum which will be denoted here as 
(019 0 2 ) .  

What is the physical interpretation of this quantity ? The cross-bispectrum is a 
measure of the energy transfer resulting from the quadratic interaction of two 
wavenumbers in two time series to produce their sum or difference wavenumber in 
a third time series. In the present experiment, which dealt with resonant mode 
interactions, it was more instructive to measure the level of the nonlinear phase 
locking rather than the amount of energy transfer. Therefore, the normalized cross- 
bispectrum, or cross-bicoherence, was utilized. 

The cross-bicoherence (CBC) is defined as 

where i, j ,  and k refer to the time series with wavenumbers w,, w,, and w3, 
respectively, and 1 . 1  is the modulus of the component. These wavenumbers are 
related to each other such that w1 +w,  + w3 = 0. I n  the experiment in the jet, the time 
series were the streamwise velocity fluctuations, acquired at different spatial 
locations in the shear layer, u(x ,  r ,  t ) ,  and the simultaneous pressure fluctuations a t  
the lip of the jet, p(r ,  t ) .  The subscripts i, j and k refer to these two measured time 
series. For the case when i, j ,  and k are the same, Ptrk (wl, w 2 )  will be symmetric with 
respect to w, and w,, and will be referred to as the auto-bicoherence (ABC). 

In the above equation, the calculation of the quantity 

(1% (Wl)12 16, (w2)12) (B 15) 

requires considerable computer time and memory storage for respectably sized 
transforms. Therefore, it is convenient to replace it by the quantity 

(1% (w1)I2) (lGj (w2)l”. (B 16) 

To justify this substitution, several tests had been conducted on synthetic data 
having a known cross-bicoherence. In  order to simulate the types of time series we 
could expect from this experiment various levels of random noise were also 
superposed on the tested time series. It was found that for a large enough number of 
realization averages, the difference between these two quantities was small. Therefore 
making this simplification, the final form of the cross-bicoherence used was 

From the Schwarz inequality, the cross-bicoherence falls between the values of 
zero and one. When, from realization to realization the degree of triple phase locking 

Bi(wl )+Bj (w2) -Bk(w3)  (B 18) 

is high, the CBC will have a value close to one. Here B,(wl)  is the instantaneous 
circular phase angle of C, (w,) .  The maximum level of the CBC estimate is however 
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dependent on the signal-to-noise ratio of the data series. When no phase locking 
exists it is of zero. 
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